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Abstract. Current Zero-Shot Learning (ZSL) approaches are restricted
to recognition of a single dominant unseen object category in a test
image. We hypothesize that this setting is ill-suited for real-world appli-
cations where unseen objects appear only as a part of a complex scene,
warranting both the ‘recognition’ and ‘localization’ of an unseen cate-
gory. To address this limitation, we introduce a new ‘Zero-Shot Detec-
tion’ (ZSD) problem setting, which aims at simultaneously recognizing
and locating object instances belonging to novel categories without any
training examples. We also propose a new experimental protocol for ZSD
based on the highly challenging ILSVRC dataset, adhering to practical
issues, e.g., the rarity of unseen objects. To the best of our knowledge,
this is the first end-to-end deep network for ZSD that jointly models
the interplay between visual and semantic domain information. To over-
come the noise in the automatically derived semantic descriptions, we
utilize the concept of meta-classes to design an original loss function
that achieves synergy between max-margin class separation and semantic
space clustering. Furthermore, we present a baseline approach extended
from recognition to detection setting. Our extensive experiments show
significant performance boost over the baseline on the imperative yet
difficult ZSD problem.

Keywords: Zero-shot learning, Object detection, Zero-shot detection

1 Introduction

Since its inception, zero-shot learning research has been dominated by the object
classification problem [2,5,10,18,21,22,29,33,39,47,51,52,53]. Although it still re-
mains as a challenging task, the zero-shot recognition has a number of limitations
that render it unusable in real-life scenarios. First, it is destined to work for sim-
pler cases where only a single dominant object is present in an image. Second, the
attributes and semantic descriptions are relevant to individual objects instead
of the entire scene composition. Third, zero-shot recognition provides an answer
to unseen categories in elementary tasks, e.g., classification and retrieval, yet it
is unable to scale to advanced tasks such as scene interpretation and contex-
tual modeling, which require a fundamental reasoning about all salient objects
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Fig. 1. ZSD deals with a more complex label space (object labels and locations) with
considerably less supervision (i.e., no examples of unseen classes). (a) Traditional recog-
nition task only predicts seen class labels. (b) Traditional detection task predicts both
seen class labels and bounding boxes. (c) Traditional zero-shot recognition task only
predicts unseen class labels. (d) The proposed ZSD predicts both seen and unseen
classes and their bounding boxes.

in the scene. Fourth, global attributes are more susceptible to background vari-
ations, viewpoint, appearance and scale changes and practical factors such as
occlusions and clutter. As a result, image-level ZSL fails for the case of complex
scenes where a diverse set of competing attributes that do not belong to a single
image-level category would exist.

To address these challenges, we introduce a new problem setting called the
zero-shot object detection. As illustrated in Fig. 1, instead of merely classifying
images, our goal is to simultaneously detect and localize each individual instance
of new object classes, even in the absence of any visual examples of those classes
during the training phase. In this regard, we propose a new zero-shot detec-
tion protocol built on top of the ILSVRC - Object Detection Challenge [40].
The resulting dataset is very demanding due to its large scale, diversity, and
unconstrained nature, and also unique due to its leveraging on WordNet seman-
tic hierarchy [31]. Taking advantage of semantic relationships between object
classes, we use the concept of ‘meta-classes’1 and introduce a novel approach to
update the semantic embeddings automatically. Raw semantic embeddings are
learned in an unsupervised manner using text mining and therefore they have
considerable noise. Our optimization of the class embeddings proves to be an
effective way to reduce this noise and learn robust semantic representations.

ZSD has numerous applications in novel object localization, retrieval, track-
ing, and reasoning about object’s relationships with its environment using only
available semantics, e.g., an object name or a natural language description. Al-
though a critical problem, ZSD is remarkably difficult compared to its classi-
fication counterpart. While the zero-shot recognition problem assumes only a
single primary object in an image and attempts to predict its category, the ZSD
task has to predict both the multi-class category label and precise location of
each instance in the given image. Since there can be a prohibitively huge num-
ber of possible locations for each object in an image and because the semantic
class descriptions are noisy, a detection approach is much more susceptible to

1 Meta-classes are obtained by clustering semantically similar classes.
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incorrect predictions compared to classification. Therefore, it would be expected
that a ZSD method predicts a class label that might be incorrect but visually
and semantically similar to the corresponding true class. For example, wrongly
predicting a ‘spider’ as ‘scorpion’ where both are semantically similar because of
being invertebrates. To address this issue, we relax the original detection problem
to independently study the confusions emanating from the visual and semantic
resemblance between closely linked classes. For this purpose, alongside the ZSD,
we evaluate on zero-shot meta-class detection, zero-shot tagging, and zero-shot
meta class tagging. Notably, the proposed network is trained only ‘once’ for ZSD
task and the additional tasks are used during evaluations only.

Although deep network based solutions have been proposed for zero-shot
recognition [10,22,51], to the best of our knowledge, we propose the first end-
to-end trainable network for the ZSD problem that concurrently relates visual
image features with the semantic label information. This network considers se-
mantic embedding vector of classes as a fixed embedding within the network to
produce prediction scores for both seen and unseen classes. We propose a novel
loss formulation that incorporates max-margin learning [53] and a semantic clus-
tering loss based on class-scores of different meta-classes. While the max-margin
loss tries to separate individual classes, semantic clustering loss tries to reduce
the noise in semantic vectors by positioning similar classes together and dis-
similar classes far apart. Notably, our proposed formulation assumes predefined
unseen classes to explore the semantic relationships during model learning phase.
This assumption is consistent with recent efforts in the literature which consider
class semantics to solve the domain shift problem in ZSL [7,12] and does not
a constitute transductive setting [8,11,18]. Based on the premise that unseen
class semantics may be unknown during training in several practical zero-shot
scenarios, we also propose a variant of our approach that can be trained without
predefined unseen classes. Finally, we propose a comparison method for ZSD by
extending a popular zero-shot recognition framework named ConSE [33] using
Faster-RCNN [38].

In summary, this paper reports the following advances:

– We introduce a new problem for zero-shot learning, which aims to jointly
recognize and localize novel objects in complex scenes.

– We present a new experimental protocol and design a novel baseline solution
extended from conventional recognition to the detection task.

– We propose an end-to-end trainable deep architecture that simultaneously
considers both visual and semantic information.

– We design a novel loss function that achieves synergistic effects for max-
margin class separation and semantic clustering based on meta-classes. Be-
side that, our approach can automatically tune noisy semantic embeddings.

2 Problem Description

Given a set of images for seen object categories, ZSD aims at the recognition and
localization of previously unseen object categories. In this section, we formally
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describe the ZSD problem and its associated challenges. We also introduce vari-
ants of the detection task, which are natural extensions of the original problem.
First, we describe the notations used in the following discussion.

Preliminaries: Consider a set of ‘seen’ classes denoted by S = {1, . . . ,S},
whose examples are available during the training stage and S represents their
total number. There exists another set of ‘unseen’ classes U = {S+1, . . . ,S+U},
whose instances are only available during the test phase. We denote the set of
all object classes by C = S ∪ U , such that C = S + U denote the cardinality of
the label space.

We define a set of meta (or super) classes by grouping similar object classes
into a single meta category. These meta-classes are denoted by M = {zm :
m ∈ [1,M]}, where M denote the total number of meta-classes and zm = {k ∈
C s.t., g(k) = m}. Here, g(k) is a mapping function which maps each class k
to its corresponding meta-class zg(k). Note that the meta-classes are mutually
exclusive i.e., ∩Mm=1zm = φ and ∪Mm=1zm = C.

The set of all training images is denoted by X s, which contains examples of
all seen object classes. The set of all test images containing samples of unseen
object classes is denoted by X u. Each test image x ∈ X u contains at least one
instance of an unseen class. Notably, no unseen class object is present in X s, but
X u may contain seen objects.

We define a d dimensional word vector vc (word2vec or GloVe) for every
class c ∈ C. The ground-truth label for an ith bounding box is denoted by
yi. The object detection task also involves identifying the background class for
negative object proposals, we introduce the extended label sets: S ′ = S ∪ ybg,
C′ = C ∪ ybg andM′ =M∪ ybg, where ybg = {C + 1} is a singleton set denoting
the background label.

Task Definitions: Given the observed space of images X = X s ∪ X u and
the output label space C′, our goal is to learn a mapping function f : X 7→ C′
which gives the minimum regularized empirical risk (R̂) as follows:

arg min
f∈F
R̂(f(x;Θ)) +Ω(Θ), (1)

where, x ∈ X s during training, Θ denotes the set of parameters and Ω(Θ)
denotes the regularization on the learned weights. The mapping function has
the following form:

f(x;Θ) = arg max
y∈C

max
b∈B(x)

F(x, y, b;Θ), (2)

where F(·) is a compatibility function, B(x) is the set of all bounding box pro-
posals in a given image x. Intuitively, Eq. 2 finds the best scoring bounding
boxes for each object category and assigns them the maximum scoring object
category. Next, we define the zero-shot learning tasks which go beyond a sin-
gle unseen category recognition in images. Notably, the training is framed as
the challenging ZSD problem, however the remaining task descriptions are used
during evaluation to relax the original problem:
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Fig. 2. Network Architecture - Left: Image level feature maps are used to propose
candidate object boxes and their corresponding features. Right: The features are used
for classification and localization of new classes by utilizing their semantic concepts.

T1 Zero-shot detection (ZSD): Given a test image x ∈ X u, the goal is to cate-
gorize and localize each instance of an unseen object class u ∈ U .

T2 Zero-shot meta-class detection (ZSMD): Given a test image x ∈ X u, the goal
is to localize each instance of an unseen object class u ∈ U and categorize it
into one of the super-classes m ∈M.

T3 Zero-shot tagging (ZST): To recognize one or more unseen classes in a test
image x ∈ X u, without identifying their location.

T4 Zero-shot meta-class tagging (ZSMT): To recognize one or more meta-classes
in a test image x ∈ X u, without identifying their location.

Among the above mentioned tasks, the ZSD is the most difficult problem
and difficulty level decreases as we go down the list. The goal of the later tasks
is to distill the main challenges in ZSD by investigating two ways to relax the
original problem: (a) The effect of reducing the unseen object classes by cluster-
ing similar unseen classes into a single super-class (T2 and T4). (b) The effect
of removing the localization constraint. To this end we investigate the zero-shot
tagging problem, where the goal is to only recognize all object categories in an
image (T3 and T4).

The state-of-the-art in zero-shot learning deals with only recognition/tagging.
The proposed problem settings add the missing detection task which indirectly
encapsulates traditional recognition and tagging task.

3 Zero-Shot Detection

Our proposed model uses Faster-RCNN [38] as a backbone architecture, due
to its superior performance among competitive end-to-end detection models
[17,28,37]. We first provide an overview of our proposed model architecture and
then discuss network learning. Finally, we extend a popular ZSL approach to
the detection problem, against which we compare our performance in the exper-
iments.
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3.1 Model Architecture

The overall architecture is illustrated in Fig 2. It has two main components
marked in color: the first provides object-level feature descriptions and the second
integrates visual information with the semantic embeddings to perform zero-shot
detection. We explain these in detail next.

Object-level Feature Encoding: For an input image x, a deep network (VGG
or ResNet) is used to obtain the intermediate convolutional activations. These
activations are treated as feature maps, which are forwarded to the Region Pro-
posal Network (RPN). The RPN generates a set of candidate object proposals
by automatically ranking the anchor boxes at each sliding window location. The
high-scoring candidate proposals can be of different sizes, which are mapped to
fixed sized representation using a RoI pooling layer which operates on the ini-
tial feature maps and the proposals generated by the RPN. The resulting object
level features for each candidate are denoted as ‘f ’. Note that the RPN generates
object proposal based on the objectness measure. Thus, a trained RPN on seen
objects can generate proposals for unseen objects also. In the second block of
our architecture, these feature representations are used alongside the semantic
embeddings to learn useful representations for both the seen and unseen object-
categories.

Integrating Visual and Semantic Contexts: The object-level feature f is for-
warded to two branches in the second module. The top branch is trained to
predict the object category for each candidate box. Note that this can assign a
class c ∈ C′, which can be a seen, unseen or background category. The branch
consists of two main sub-networks, which are key to learning the semantic rela-
tionships between seen and unseen object classes.

The first component is the ‘Semantic Alignment Network ’ (SAN), which con-
sist of an adjustable FC layer, whose parameters are denoted as W1 ∈ Rd×d,
that projects the input visual feature vectors to a semantic space with d dimen-
sions. The resulting feature maps are then projected onto the fixed semantic
embeddings, denoted by W2 ∈ Rd×(C+1), which are obtained in an unsupervised
manner by text mining (e.g., Word2vec and GloVe embeddings). Note that, here
we consider both seen and unseen semantic vectors which require unseen classes
to be predefined. This consideration is inline with a very recent effort [12] which
adopt this setting to explore the cluster manifold structure of the semantic em-
bedding space and address domain shift issue. Given a feature representation
input to SAN in the top branch, f t, the overall operation can be represented as:

o = (W1W2)T f t. (3)

Here, o is the output prediction score. The W2 is formed by stacking semantic
vectors for all classes, including the background class. For background class, we
use the mean word vectors vb = 1

C

∑C
c=1 vc as its embedding in W2.

Notably, a non-linear activation function is not applied between the ad-
justable and fixed semantic embeddings in the SAN. Therefore, the two pro-
jections can be understood as a single learnable projection on to the semantic
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embeddings of object classes. This helps in automatically updating the seman-
tic embeddings to make them compatible with the visual feature domain. It is
highly valuable because the original semantic embeddings are often noisy due to
the ambiguous nature of closely related semantic concepts and the unsupervised
procedure used for their calculation. In Fig. 3, we visualize modified embedding
space when different loss functions are applied during training.

The bottom branch is for bounding box regression to add suitable offsets
to the proposals to align them with the ground-truths such that the precise
location of objects can be predicted. This branch is set up in the same manner
as in Faster-RCNN [38].

3.2 Training and Inference

We follow a two step training approach to learn the model parameters. The first
part involves training the backbone Faster-RCNN for only seen classes using the
training set X s. This training involves initializing weights of shared layers with a
pre-trained Vgg/ResNet model, followed by learning the RPN, classification and
detection networks. In the second step, we modify the Faster-RCNN model by
replacing the last layer of Faster-RCNN classification branch with the proposed
semantic alignment network and an updated loss function (see Fig. 2). While
rest of the network weights are used from the first step, the weights W1 are
randomly initialized and the W2 are fixed to semantic vectors of the object
classes and not updated during training.

While training in second step, we keep the shared layers trainable but fix the
layers specific to RPN since the object proposals requirements are not changed
from the previous step. The same seen class images X s are used for training,
consistent with the first step. For each given image, we obtain the output of RPN
which consists of a total of ‘R’ ROIs belonging to both positive and negative ob-
ject proposals. Each proposal has a corresponding ground-truth label given by
yi ∈ S ′. Positive proposals belong to any of the seen class S and negative propos-
als contain only background. In our implementation, we use an equal number of
positive and negative proposals. Now, when object proposals are passed through
ROI-Pooling and subsequent dense layers, a feature representation fi is calcu-
lated for each ROI. This feature is forwarded to two branches, the classification
branch and regression branch. The overall loss is the summation of the respective
losses in these two branches, i.e., classification loss and bounding box regression
loss.

L(oi, bi, yi, b
∗
i ) = arg min

Θ

1

T

∑
i

(
Lcls(oi, yi) + Lreg(bi, b

∗
i )
)

where Θ denotes the parameters of the network, oi is the classification branch
output, T = N×R represents the total number of ROIs in the training set with
N images. bi and b∗i are parameterized coordinates of predicted and ground-
truth bounding boxes respectively and yi represents the true class label of the
ith object proposal.
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Fig. 3. The 2D tSNE embed-
ding of modified word vectors
W1W2 using only max-margin
loss, Lmm (left) and with clus-
tering loss, Lmm +Lmc (right).
Semantically similar classes are
embedded more closely in clus-
ter based loss.

Classification loss: This loss deals with both seen and unseen classes. It
has two components: a max-margin loss (Lmm) and a meta-class clustering loss
(Lmc).

Lcls(oi, yi) = λLmm(oi, yi) + (1− λ)Lmc(oi, g(yi)), (4)

where, λ is a hyper-parameter that controls the trade-off between the two losses.
We define,

Lmm(oi, yi) =
1

|C′ \ yi|
∑

c∈C′\yi

log
(

1 + exp(oc − oyi)
)
, and

Lmc(oi, g(yi)) =
1

|M′ \ zg(yi)||zg(yi)|
∑

c∈M′\zg(yi)

∑
j∈zg(yi)

log
(

1 + exp(oc − oj)
)

where, ok represents the prediction response of class k ∈ S. Lmm tries to separate
the prediction response of true class from rest of the classes. In contrast, Lmc
tries to cluster together the members of each super-class and pulls further apart
the classes belonging to different meta-classes.

We illustrate the effect of clustering loss on the learned embeddings in Fig. 3.
The use of Lmc enables us to cluster semantically similar classes together which
results in improved embeddings in the semantic space. For example, all animals
related meta-classes are in close position whereas food and vehicle are far apart.
Such a clear separation in semantic space helps in obtaining a better ZSD per-
formance. Moreover, meta-class based clustering loss does not harm fine-grained
detection because the hype-parameter λ is used to put more emphasis on the
max-margin loss (Lmm) as compared to the clustering part (Lmc) of the over-
all loss (Lcls). Still, the clustering loss provides enough guidance to the noisy
semantic embeddings (e.g., unsupervised w2v/glove) such that similar classes
are clustered together as illustrated in Fig. 3. Note that w2v/glove try to place
similar words nearby with respect to millions of text corpus, it is therefore not
fine-tuned for just 200 class recognition setting.

Regression loss: This part of the loss is similar to faster-RCNN regression
loss which fine-tunes the bounding box for each seen class ROI. For each fi, we
get 4×S values representing 4 parameterized co-ordinates of the bounding box of
each object instance. The regression loss is calculated based on these co-ordinates
and parameterized ground truth co-ordinates. During training, no bounding box
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prediction is done for background and unseen classes due to unavailability of
visual examples. As an alternate approach, we approximate the bounding box
for an unseen object through the box proposal for a closely related seen object
that achieves maximum response. This is a reasonable approximation because
visual features of unseen classes are related to that of similar seen classes.

Prediction: We normalize each output prediction value of classification
branch using ôc = oc

‖vc‖2‖f t‖2 . It basically calculates the cosine similarity be-

tween modified word vectors and image features. This normalization maps the
prediction values within 0 to 1 range. We classify an object proposal as back-
ground if maximum responds among ôc where c ∈ C′ belongs to ybg. Otherwise,
we detect an object proposal as unseen object if its maximum prediction response
among ôu where u ∈ U is above a threshold α.

yu = arg max
u∈U

ôu s.t., ôu > α. (5)

The other detection branch finds bi which is the parameterized co-ordinates of
bounding boxes corresponds to S seen classes. Among them, we choose a bound-
ing box corresponding to the class having the maximum prediction response in
ôs where s ∈ S for the classified unseen class yu. For the tagging tasks, we simply
use the mapping function g(.) to assign a meta-class for any unseen label.

3.3 ZSD without Pre-defined Unseen

While applying clustering loss in Sec. 3.2, the meta-class assignment adds high-
level supervision in the semantic space. While doing this assignment, we consider
both seen and unseen classes. Similarly, the max-margin loss considers the set
C′ consisting of both seen and unseen classes. This problem setting helps to
identify the clustering structure of the semantic embeddings to address domain
adaptation for zero-shot detection. However, in several practical scenarios, un-
seen classes may not be known during training. Here, we report a simplified
variant of our approach to train the proposed network without pre-defined un-
seen classes.

For this problem setting, we use only seen+bg word vectors (instead of
seen+unseen+bg vectors) as the fixed embedding W2 ∈ Rd×(S+1) to train
the whole framework with only the max-margin loss, L′mm, defined as follows:

L′mm(oi, yi) = 1
|S′\yi|

∑
c∈S′\yi log

(
1 + exp(oc − oyi)

)
. Since the output classi-

fication layer cannot make predictions for unseen classes, we apply a procedure
similar to ConSE during the testing phase [33]. The choice of [33] here is made
due to two main reasons: (a) In contrast to other ZSL methods which train
separate models for each class [5,36], ConSE can work on the prediction score
of a single end-to-end framework. (b) It is straight-forward to extend a single
network to ZSD along with ConSE, since [33] uses semantic embeddings only
during the test phase.

Suppose, for an object proposal, o ∈ RS+1 is the vector containing final
probability values of only seen classes and background. As described earlier, we
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ignore the object proposal if the background class get highest probability score.
For other cases, we sort the vector o in descending order to compute a list of
indices l and the sorted list ô:

ô, l = sort(o) s.t., oj = ôlj . (6)

Then, top K score values (s.t., K ≤ S) from ô are combined with their corre-

sponding word vectors using the equation: ei =
∑K
k=1 ôkvlk . We consider ei as a

semantic space projection of an object proposal which is a combination of word
vectors weighted by top K seen class probabilities. The final prediction is made
by finding the maximum cosine similarity among ei and all unseen word vectors,

yu = arg max
u∈U

cos(ei,vu).

In this paper, we use K = 10 as proposed in [33]. For bounding box detection,
we choose the box for which corresponding seen class gets maximum score.

4 Experiments

4.1 Dataset and Experiment Protocol

Dataset: We evaluate our approach on the standard ILSVRC-2017 detection
dataset [40]. This dataset contains 200 object categories. For training, it includes
456,567 images and 478,807 bounding box annotations around object instances.
The validation dataset contains 20,121 images fully annotated with the 200 ob-
ject categories which include 55,502 object instances. A category hierarchy has
been defined in [40], where some objects have multiple parents. Since, we also
evaluate our approach on meta-class detection and tagging, we define a single
parent for each category (see supplementary material for detail).

Seen/unseen split: Due to lack of an existing ZSD protocol, we propose
a challenging seen/unseen split for ILSVRC-2017 detection dataset. Among 200
object categories, we randomly select 23 categories as unseen and rest of the 177
categories are considered as seen. This split is designed to follows the following
practical considerations: (a) unseen classes are rare, (b) test categories should be
diverse, (c) the unseen classes should be semantically similar with at least some
of the seen classes. The details of split are provided in supplementary material.

Train/test set: A zero-shot setting does not allow any visual example of an
unseen class during training. Therefore, we customize the training set of ILSVRC
such that images containing any unseen instance are removed. This results in
a total of 315,731 training images with 449,469 annotated bounding boxes. For
testing, the traditional zero-shot recognition setting is used which considers only
unseen classes. As the test set annotations are not available to us, we cannot
separate unseen classes for evaluation. Therefore, our test set is composed of
the left out data from ILSVRC training dataset plus validation images having
at least one unseen bounding box. The resulting test set has 19,008 images and
19,931 bounding boxes.
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Network
ZSD ZSMD ZST ZSMT

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

Baseline
Ours
(L′

mm)
Ours
(Lcls)

R+w2v 12.7 15.0 16.0 13.7 15.4 15.4 23.3 27.5 30.0 28.8 33.4 39.3

R+glo 12.0 12.3 14.6 12.9 14.1 16.1 22.3 24.5 26.2 29.2 31.5 36.3

V+w2v 10.2 12.7 11.8 11.4 12.5 11.8 23.3 25.6 26.2 29.0 31.3 36.0

V+glo 9.0 10.8 11.6 9.7 11.3 11.8 20.3 22.9 23.9 27.3 29.2 34.2

Table 1. mAP of the unseen classes. Ours (with L′
mm) and Ours (with Lcls) denote

the performance without predefined unseen and with cluster loss respectively (Sec. 3.3
and Sec. 3.2) . For cluster case, λ = 0.8.

Semantic embedding: Traditionally ZSL methods report performance on
both supervised attributes and unsupervised word2vec/glove as semantic em-
beddings. As manually labeled supervised attributes are hard to obtain, only
small-scale datasets with these annotations are available [9,20]. ILSVRC-2017
detection dataset used in the current work is quite huge and does not provide
attribute annotations. In this paper, we work on `2 normalized 500 and 300
dimensional unsupervised word2vec [30] and GloVe [35] vector respectively to
describe the classes. These word vectors are obtained by training on several
billion words from Wikipedia dump corpus.

Evaluation Metric: We report average precision (AP) of individual unseen
classes and mean average precision (mAP) for the overall performance of unseen
classes.

Implementation Details: Unlike Faster-RCNN, our first step is trained
in one step: after initializing shared layer with pre-trained weights, RPN and
detection network of Fast-RCNN layers are learned together. Some other set-
tings includes rescaling shorter size of image as 600 pixels, RPN stride = 16,
three anchor box scale 128, 256 and 512 pixels, three aspect ratios 1:1, 1:2 and
2:1, non-maximum suppression (NMS) on proposals class probability with IoU
threshold = 0.7. Each mini-batch is obtained from a single image having 16
positive and 16 negative (background) proposals. Adam optimizer with learning
rate 10−5, β1 = 0.9 and β2 = 0.999 is used in both state training. First step is
trained over 10 million mini-batches without any data augmentation, but data
augmentation through repetition of object proposals is used in second step (de-
tails in supplementary material). During testing, the prediction score threshold
was 0.1 for baseline and Ours (with L′mm) and 0.2 for clustering method (Ours
with Lcls). We implement our model in Keras.

4.2 ZSD Performance

We compare different versions of our method (with loss configurations L′mm and
Lcls respectively) to a baseline approach. Note that the baseline is a simple
extension of Faster-RCNN [38] and ConSE [33]. We apply the inference strategy
mentioned in Sec. 3.3 after first step training as we can still get a vector o ∈
RS+1 on the classification layer of Faster-RCNN network. We use two different
architectures i.e., VGG-16 (V) [42] and ResNet-50 (R) [13] as the backbone of
the Faster-RCNN during the first training step. In second step, we experiment
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ZSD Baseline = 6.3, Ours (L′

mm) = 6.5, Ours (Lcls) = 4.4 ZSD Baseline = 18.6, Ours (L′
mm) = 22.7, Ours (Lcls) = 27.4

Zero-Shot Detection (ZSD)

Baseline 12.7 0.0 3.9 0.5 0.0 36.3 2.7 1.8 1.7 12.2 2.7 7.0 1.0 0.6 22.0 19.0 1.9 40.9 75.3 0.3 28.4 17.9 12.0 4.0
Ours (L′

mm) 15.0 0.0 8.0 0.2 0.2 39.2 2.3 1.9 3.2 11.7 4.8 0.0 0.0 7.1 23.3 25.7 5.0 50.5 75.3 0.0 44.8 7.8 28.9 4.5
Ours (Lcls) 16.4 5.6 1.0 0.1 0.0 27.8 1.7 1.5 1.6 7.2 2.2 0.0 4.1 5.3 26.7 65.6 4.0 47.3 71.5 21.5 51.1 3.7 26.2 1.2

Zero-Shot Tagging (ZST)

Baseline 23.3 2.9 13.4 9.6 3.1 61.7 20.7 16.3 7.5 29.4 8.6 12.2 8.5 4.9 46.2 30.7 11.0 51.8 77.6 9.0 46.1 39.0 12.7 12.6
Ours (L′

mm) 27.5 2.9 20.8 10.5 3.3 72.5 27.7 16.7 7.9 22.9 14.3 2.8 6.7 14.5 46.8 42.6 16.0 59.1 80.0 12.9 67.3 34.1 34.0 17.1
Ours (Lcls) 30.6 12.6 10.2 11.9 4.9 48.9 21.8 17.9 29.1 32.2 10.0 4.1 20.7 10.7 52.2 82.6 12.3 58.5 75.5 48.9 72.2 16.9 33.9 15.5

Meta-class Indoor Musical Food Clothing Appli. Kitchen Furn. Electronic Invertebra. Mammal Fish Vehicle Sport

Zero-Shot Meta Detection (ZSMD)

Baseline 13.7 3.3 0.3 24.0 4.0 12.2 2.1 1.0 12.1 17.0 70.7 0.3 22.1 8.5
Ours (L′

mm) 15.4 8.1 0.1 18.4 2.3 11.7 3.0 0.0 14.3 27.8 73.6 0.0 32.1 9.0
Ours (Lcls) 15.6 3.5 0.1 10.0 1.9 7.2 1.2 4.1 15.3 31.4 66.8 21.5 31.2 9.3

Zero-Shot Meta-class Tagging (ZSMT)

Baseline 28.8 15.2 12.0 55.6 25.2 29.4 10.7 8.5 31.5 36.5 75.8 9.0 48.4 17.0
Ours (L′

mm) 33.4 24.1 13.6 55.9 31.3 22.9 14.7 6.7 33.0 49.4 82.6 12.9 64.2 23.2
Ours (Lcls) 39.9 19.2 15.5 45.6 38.5 32.2 12.4 20.7 40.3 58.2 84.8 48.9 74.7 27.1

Table 2. Average precision of individual unseen classes using ResNet+w2v and loss
configurations L′

mm and Lcls (cluster based loss with λ = 0.6). We have grouped unseen
classes into two groups based on whether visually similar classes present in the seen
class set or not. Our proposed method achieve significant performance improvement
for the group where similar classes are present in the seen set.

with both Word2vec and GloVe as the semantic embedding vectors used to define
W2. Fig. 4 illustrates some qualitative ZSD examples. More performance results
of ZSD on other datasets is provided in the supplementary material.

Overall results: Table 1 reports the mAP for all approaches on four tasks:
ZSD, ZSMD, ZST, and ZSMT across different combinations of network archi-
tectures. We can make following observations: (1) Our cluster based method
outperforms other competitors on all four tasks because its loss utilizes high-
level semantic relationships from meta-class definitions which are not present
in other methods. (2) Performances get improved from baseline to Ours (with
L′mm) across all zero-shot tasks. The reason is baseline method did not consider
word vectors during the training. Thus, overall detection could not get enough
supervision about the semantic embeddings of classes. In contrast, L′mm loss
formulation considers word vectors. (3) Performances get improved from ZST to
ZSMT across all methods whereas similar improvement is not common from ZSD
to ZSMD. It’s not surprising because ZSMD can get some benefit if meta-class
of the predicted class is same as the meta-class of true class. If this is violated
frequently, we cannot expect significant performance improvement in ZSMD. (4)
In comparison of traditional object detection results, ZSD achieved significantly
lower performance. Remarkably, even the state-of-the-art zero-shot classification
approaches perform quite low e.g., a recent ZSL method [51] reported 11% hit@1
rate on ILSVRC 2010/12. This trend does not undermine to significance of ZSD,
rather highlights the underlying challenges.

Individual class detection: Performances of individual unseen classes in-
dicate the challenges for ZSD. In Table 2, we show performances of individual
unseen classes across all tasks with our best (R+w2v) network. We observe that
the unseen classes for which visually similar classes are present in their meta-
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Top1 Accuracy Network w2v glo

Akata’16 [1] V 33.90 -
DMaP-I’17[24] G+V 26.38 30.34
SCoRe’17[32] G 31.51 -
Akata’15 [3] G 28.40 24.20

LATEM’16 [46] G 31.80 32.50
DMaP-I’17 [24] G 26.28 23.69

Ours R 36.77 36.82

Table 3. Zero shot recognition on CUB using λ = 1
because no meta-class assignment is done here. For
fairness, we only compared our result with the in-
ductive setting of other methods without per image
part annotation and description. We refer V=VGG,
R=ResNet, G=GoogLeNet.

classes achieve better detection performance (ZSD mAP 18.6, 22.7, 27.4) than
those which do not have similar classes (ZSD mAP 6.3, 6.5, 4.4) for the all meth-
ods (baseline, our’s with L′mm and Lcls). Our proposed cluster method with loss
Lcls outperforms the other versions significantly for the case when visually sim-
ilar classes are present. For the all classes, our cluster method is still the best
(mAP: cluster 16.4 vs. baseline 12.7). However, our’s with L′mm method per-
forms better for when case similar classes are not present (mAP 6.5 vs 4.4).
For the easier tagging tasks (ZST and ZSMT), the cluster method gets supe-
rior performance in most of the cases. This indicates that one potential reason
for the failure cases of our cluster method for ZSD might be confusions during
localization of objects due to ambiguities in visual appearance of unseen classes.
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Fig. 4. Effect of varying λ in different
zero-shot tasks for ResNet+w2v (left) and
ResNet+glo (right).

Varying λ: The hyperparameter
λ controls the weight between Lmm
and Lmc in Lcls. In Fig. 4, we il-
lustrate the effect of varying λ on
four zero-shot tasks for R+w2v and
R+glo. It shows that performances
has less variation in the range of λ =
.5 to .9 than λ = .9 to 1. For a larger
λ, mAP starts dropping since the im-
pact of Lmc decreases significantly.

4.3 Zero Shot Recognition (ZSR)

Being a detection model, the proposed network can also perform traditional ZSR.
We evaluate ZSR performance on popular Caltech-UCSD Birds-200-2011 (CUB)
dataset [44]. This dataset contains 11,788 images from 200 classes and provides
single bounding boxes per image. Following standard train/test split [47], we use
150 seen and 50 unseen classes for experiments. For semantics embedding, we use
400-d word2vec (w2v) and GloVe (glo) vector [46]. Note that, we do not use per
image part annotation (like [1]) and descriptions (like [51]) to enrich semantic
embedding. For a given test image, our network predicts unseen class bounding
boxes. We pick only one label with the highest prediction score per image. In
this way, we report the mean Top1 accuracy of all unseen classes in Table 3. One
can find our proposed solution achieve significant performance improvement in
comparison with state-of-the-art methods.
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Fig. 5. Selected examples of ZSD of our cluster (λ = .6) method with R+w2v, using
the prediction score threshold = 0.3. (See supplementary material for more examples)

4.4 Challenges and New Directions

ZSD is challenging: Our empirical evaluations show that ZSD needs to deal
with the following challenges: (1) Unseen classes are rare compared to seen
classes; (2) Small unseen objects are hard to detect and harder to relate with
their semantics; (3) The scarcity of similar seen class leads to an inadequate
description of an unseen class; (4) As derived in an unsupervised manner, the
noise of semantic space affects ZSD. These issues are discussed in detail in sup-
plementary material.
Future challenges: The ZSD problem warrants further investigation. (1) Un-
link current work one can consider fine-tuning the bounding box of the both seen
and unseen classes based on visual and semantic correspondences. (2) Rather
mapping image feature to the semantic space, the reverse mapping may help
ZSD similar to ZSR used in [19,51]. (3) One can consider the fusion of differ-
ent word vectors (word2vec and GloVe) to improve ZSD. (4) Like generalized
ZSL [48,47,24], one can extend it to a more realistic generalized ZSD. More-
over, weakly supervised or semi-supervised version of zero shot problems is also
possible while performing ZSD/GZSD.

5 Conclusion

While traditional ZSL research focuses on only object recognition, we propose
to extend the problem to object detection (ZSD). To this end, we offer a new
experimental protocol with ILSVRC-2017 dataset specifying the seen-unseen,
train-test split. We also develop an end-to-end trainable CNN model to solve
this problem. We show that our solution is better than a strong baseline.
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Overall, this research throws some new challenges to ZSL community. To
make a long-standing progress in ZSL, the community needs to move forward in
the detection setting rather than merely recognition.
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Supplementary Material

Zero Shot Object Detection

A. Related Work

End-to-end Object detection: Though object detection has been extensively
studied in the literature, we can only find a few end-to-end learning pipelines
capable of simultaneous object localization and classification. Popular examples
of such approaches are Faster R-CNN [38], R-FCN [17], SSD [28] and YOLO
[37]. The contribution of these methods relies on object localization process.
Methods like Faster R-CNN [38], R-FCN [17] are based on Region Proposal
Network (RPN) which provides bounding box proposals of possible objects and
then classifying and fine tuning the box prediction in the later layers. In contrast,
methods like SSD [28] and YOLO [37] draw bounding box and classify it in a
single step. Unlike RPN; these methods predict bounding box offset of some
pre-defined anchors instead of the box co-ordinates itself. The later methods
are generally faster than the previous ones. However, RPN based methods are
better in terms of accuracy. In current work, we prioritize accuracy over speed.
Therefore, we build zero-shot object detection model based on the Faster RCNN.

Semantic embedding: Any zero-shot task like recognition or tagging re-
quires semantic information of classes. This semantic information works as a
bridge among seen and unseen classes. The common way to preserve the seman-
tic information of a class is by using a one-dimensional vector. The vector space
that holds semantic information of classes is called ‘semantic embedding space’.
Visually similar classes reside in a close position in this space. The semantic
vector of any class can be generated both manually or automatically. The man-
ually generated semantic vectors are often called attributes [44,21]. Although
attributes can describe a class with less noise (than other kinds of embeddings),
those are very hard to obtain because of manual annotations. As a workaround,
automatic semantic embedding can be generated from a large corpus of unan-
notated text like (Wikipedia, news article, etc.) or hierarchical relationship of
classes in WordNet [31]. Some popular examples of such kind of semantic em-
beddings are word2vec [30], GloVe [35], and hierarchies [46]. As generated by an
unsupervised manner, such embeddings become noisy but provide more flexibil-
ity and scalability than manual vectors.

Zero-shot learning: Humans can recognize an object by relating known
objects, without prior visual experience. Simulating this behavior into an auto-
mated machine vision system is called Zero-shot learning (ZSL). ZSL attempts
to recognize unseen objects without any visual examples of the unseen category.
In recent years, numerous effective methods for ZSL have been proposed. Every
ZSL strategy has to relate seen and unseen embedding through semantic em-
bedding vector. Based on how this relation is established, we can categorize ZSL
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strategies into three types. The first type of methods attempt to predict the
semantic vector of classes [34,45,21,50]. An object is classified as an unseen class
based on similarity of predicted vector and semantic vectors of unseen classes.
Predicting a high dimensional vector is not an efficient way to related seen-
unseen classes because it cannot work consistently if the semantic vectors are
noisy [15]. This reason provokes this kind of methods to use attributes as seman-
tic embedding as they are less noisy. The second kind of methods learn a linear
[2,3,39] or non-linear [46,43] compatibility function to relate the seen image fea-
ture and corresponding semantic vector. This compatibility function yields high
value if visual feature and semantic vector come from the same class and vice
versa. A visual feature is classified to an unseen class if it gets the best compat-
ibility score among all possible unseen classes. Such methods work consistently
across a wide variety of semantic embedding vectors. The third kind of methods
describe unseen classes by mixing seen visual features and semantic embedding
[33,5,52]. For this mixing purpose, sometimes methods perform per class learning
and later combine individual class output to decide outputs for unseen classes.
While most of the ZSL approaches convert visual feature to semantic spaces,
[19,51] mapped semantic vectors to the visual domain to address the hubness
problem during prediction [41]. Irrespective of method types, attributes work
better as semantic embeddings compared to unsupervised word2vec, GloVe, and
hierarchies because of less noise. To minimize this performance gap, researchers
have investigated transductive setting [49,48,24], domain adaptation [8,18] and
class-attribute association [4,6] techniques. Usually, all ZSL methods are eval-
uated on a restricted case of recognition problem where test data only contain
unseen images. Few recent efforts performed experiments on generalized version
of ZSL [48,47,24]. They found that established ZSL methods perform poorly in
such settings. Still, all these methods perform a recognition task in zero-shot set-
tings. In this paper, we extend recognition problem to a more complex detection
problem.

Zero-shot image tagging: Instead of assigning one unseen label to an im-
age during recognition task, zero-shot tagging allows to tag multiple unseen tags
to an image and/or ranking the array of unseen tags. Very few papers addressed
the zero-shot version of this problem [23,11,53]. Li et al. [23] applied the idea
of [33] in tagging. They argued that semantic embeddings (like word2vec) of all
possible tags may not be available, and therefore, proposed a hierarchical seman-
tic embedding method for those unavailable tags based on its ancestor classes
in WordNet hierarchy. [11] considered the power set of fixed unseen tags as the
label set to perform transductive multi-label learning. Recently, [53] proposed a
fast zero-shot tagging approach that can rank both seen and arbitrary unseen
tags during the testing stage. All previous attempts are not end-to-end because
they preform training on the top of pre-trained CNN features. In this paper, we
propose an end-to-end method for seen detection with zero-shot object tagging.

Object-level attribute reasoning: Object level attribute reasoning has
been studied under two themes in the literature. The first theme advocates the
use of object-level semantic representations in a traditional ZSL setting. Li et
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al. [25] proposed to use local attributes and employed these shared character-
istics to obtain zero-shot classification and segmentations. However, they dealt
with fine-grained categorization task, where both seen and unseen objects have
similar shapes (and segmentation masks), there is a single dominant category in
each image and work with only supervised attributes. Another approach aim-
ing at zero-shot segmentation is to learn a shape space shared with the novel
objects. This technique, however, can only segment new object shapes that are
very similar to the training set [16]. Along the second theme, some efforts have
more recently been reported for object localization and tracking using natural
language descriptions [14,26]. Different to our problem, they assume an accurate
semantic description of the object, use supervised examples of objects during
training, and therefore do not tackle the zero-shot detection problem.

B. Dataset and Experiment Protocol

B.1 Meta-class assignment

The classes of ILSVRC detection dataset maintain a defined hierarchy [40]. How-
ever, this hierarchy does not follow a tree structure. In this paper, we choose a
total of M = 14 meta-classes (including person), in which the 200 object classes
are divided. Table 1 describes meta-class assignment of all 200 classes. This
assignment mostly follows the hierarchy of question prescribed in the original
paper [40]. Few notable exceptions are (1) the classes of first-aid/medical items,
cosmetics, carpentry items, school supplies and bag are grouped as indoor ac-
cessory, (2) liquid container related classes are merged with kitchen items, (3)
flower pot is considered as furniture similar to MicroSoft COCO super-categories
[27], (4) All living organisms (other than people) related classes are grouped into
three different meta-class categories based on their similarity in word vector em-
bedding space: invertebrate, mammal and non-mammal animal. Although one
can argue that all invertebrate are non-mammal, this is just an assignment def-
inition we apply in this paper to obtain a uniform distribution of images across
super-classes.

B.2 Train/Test Split

Since the unseen classes are rare in real life settings and therefore their images
are hard to collect, we assume that the training set only contains frequent classes.
For ILSVRC detection dataset, number of instances per class follows a long-tail
distribution (Figure 1). For each of our defined meta-class categories, we first plot
the instance distribution of the child classes like Figure 3. Then, we randomly
select one or two classes (depending on the number of child classes) from the
rare second half of the distribution. We choose two unseen classes from the
meta-classes which have relatively large (9 or more) number of child classes. In
contrast, we choose one class as unseen for the meta-classes having less number
of child classes. The only exception is that we do not choose ‘Person’ meta-class
as unseen because it has no similar child class.
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ID Meta/Super-class Categories

1
Indoor

Accessory (25)

axe, backpack, band aid, binder, chain saw, cream, crutch,
face-powder, hairspray, hammer, lipstick, nail, neck-brace,

pencilbox, pencilsharpener, perfume, plastic-bag,
power-drill, purse, rubber-eraser, ruler, screwdriver,

stethoscope, stretcher, syringe

2 Musical (17)
accordion, banjo, cello, chime, drum, flute, french-horn,

guitar, harmonica, harp, maraca, oboe, piano, saxophone,
trombone, trumpet, violin

3 Food (21)

apple, artichoke, bagel, banana, bell-pepper, burrito, cucumber,
fig, guacamole, hamburger, head-cabbage, hotdog, lemon,

mushroom, orange, pineapple, pizza, pomegranate,
popsicle, pretzel, strawberry

4 Electronics (16)
computer-keyboard,computer-mouse, digital-clock, electric-fan,

hair-dryer, iPod, lamp, laptop, microphone, printer, vacuum,
remote-control, tape-player, traffic-light, tv or monitor, washer

5 Appliance (7)
coffee-maker, dishwasher, microwave, refrigerator, stove,

toaster, waffle-iron

6
Kitchen

item
(17)

beaker, bowl, can-opener, cocktail-shaker, corkscrew,
cup or mug, frying-pan, ladle, milk-can, pitcher, plate-rack,

salt or pepper shaker, soap-dispenser, spatula, strainer,
water-bottle, wine-bottle

7 Furniture (8)
baby-bed, bench, bookshelf,chair, filing-cabinet, flower-pot,

sofa, table

8 Clothing (11)
bathing-cap, bow-tie, brassiere, diaper, hat with a wide brim,
helmet, maillot, miniskirt, sunglasses, swimming-trunks, tie

9
Invertebrate

animal
(14)

ant, bee, butterfly, centipede, dragonfly, goldfish, isopod,
jellyfish, ladybug, lobster, scorpion, snail, starfish, tick

10
mammal
animal

(28)

antelope, armadillo, bear, camel, cattle, dog, domestic-cat,
elephant, fox, giant-panda, hamster,hippopotamus, horse,

koala-bear, lion, monkey, otter, porcupine, rabbit, red-panda,
seal, sheep, skunk, squirrel, swine, tiger, whale, zebra

11
non-mammal

animal
(6) bird, frog, lizard, ray, snake, turtle

12 Vehicle(12)
airplane, bicycle, bus, car, cart, golfcart, motorcycle,
snowmobile, snowplow, train, unicycle, watercraft

13 Sports (17)
balance-beam, baseball, basketball, bow, croquet-ball, dumbbell,
golf-ball, horizontal-bar, ping-pong-ball, puck, punching-bag,

racket, rugby-ball, ski, soccer-ball, tennis-ball, volleyball

14 Person (1) person

Table 1. Assigned meta-class to each of the 200 object categories. The unseen classes
are presented as bold.

This random selection procedure avoids biasness, ensures diversity (due to
selection from all meta-classes) and conforms to the observation that unseen
classes are not frequent.
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Fig. 1. Long-tail distribution of imageNet dataset

mAP Network w2v glo

Baseline R 31.0 26.7
Our (Lcls) R 33.5 32.3

Baseline V 30.3 27.9
Our (Lcls) V 30.4 28.4

Table 2. ZSD on CUB using λ = 1. We refer V=VGG and R=ResNet

B.3 Data Augmentation

We visualize the long-tail distribution of ILSVRC detection classes in Figure 1.
One can find that only 11 highly frequent classes (out of 200) cover top 50% of the
distribution. This distribution creates a significant impact on ZSD. To address
this problem, in the second step of training, we augment the less frequent data
to make a balance among similar seen classes for each unseen category. From the
10 million mini-batches used at the first stage of training, we create a set of over
2.8 million mini-batches for the second stage training. While creating this set, we
make sure that every unseen class gets at least 10K similar (positive) instances
from classes whose meta-class category is common to that of unseen class. In
doing so, for some unseen classes like ‘ray’, we need to randomly augment data by
repetition because the total instances of classes in the meta-class ‘non-mammal
animal’ are not more than 10K. In contrast, the unseen class like ‘tiger’ has
more than 10K similar instances in ‘mammal animal’ meta-class. Therefore, we
randomly pick 10K among those to balance the training set. After this, the rest
of instances of 2.8 million mini-batches are chosen as the background.
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C. ZSD on CUB

We evaluate the ZSD performance of the baseline and our proposed method
based on single bounding box per image provided in CUB dataset [44]. Table
2 describes the performance comparison between the baseline and our basic
method. Our overall loss (Lcls) based method outperforms the baseline in the
different network and semantic settings. Note that, we do not define any meta-
class for the CUB classes. Therefore, we use λ = 1 for CUB related experiments.

D. Further Analysis

ZSD Challenges: In general, detection is a harder task than recognition/tagging
because of locating the bounding box at the same time. The strict requirement
of not using any unseen class images during training of zero-shot setting is itself
a tough condition for recognition/tagging task which gets intensified to a high
degree for detection task. We have used ILSVRC-2017 detection dataset to eval-
uate some baseline performances of the proposed problem. This dataset has 200
classes including a total 478,807 object instances of different shapes/size and
distribution (See Figure 2). Within those, we define M = 14 meta classes which
contain one or more specific classes. Figure 3 describes the normalized number
of instances per classes within meta class. Considering this challenging dataset,
here we describe some other difficulties of the zero shot detection task:

Rarity: ILSVRC dataset contains a long-tail distribution issue, i.e., many rare
classes get less number of instances. It is apparent that an unseen class should be
within the set of rare classes. To address this fact, we randomly choose unseen
classes from each meta-class zj which lies in the rarest 50% in the distribution.
It affects the zero-shot version of the problem also.

Object size: Some rare object classes like syringe, ladybug etc. usually have
a small size. Smaller objects are difficult to detect as well as recognize.

High Diversity: Every meta-class gets a different number of classes and there
exists a high visual diversity in each meta-class images. Since, being in a same
meta-class does not guarantee of the visual similarity, it is difficult to learn
relationships for the unseen categories which are quite different from the seen
categories in the same super-class. As an example, ‘tiger’ has many similar classes
compared to ‘ray’. The scarcity of similar class enables an inadequate description
of the unseen class which eventually affect the zero shot detection performance.

Noise in semantic space: We use unsupervised semantic embedding vectors
word2vec/GloVe as the class description. Such embeddings are noisy in general
as they are generated automatically from unannotated text mining. It also affects
the zero-shot detection performance significantly.

Seen vs. Unseen Class Performance: The overall performance of ZSD
is depended on the learning of seen classes. Therefore, the performance of seen
detection can be an indication of how possibly ZSD works. To this end, we also
study the detection performance on seen classes of ILSVRC validation dataset
after the first step of faster-RCNN training (Table 3). It indicates the baseline
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Fig. 2. Word cloud based on (a) number of object instance (b) Mean object size in
pixel

performance of seen classes necessary to achieve the ZSD performance reported in
the paper. The baseline method result is better than our proposed approaches. It
is justifiable as both of our proposed methods can generate prediction for both
seen and unseen class together which sacrifices the seen performance a bit to
achieve distinction among all seen and unseen classes. The Table 3 also compares
the seen result with the unseen performance. One can find that performance of
selected unseen classes is similar to that of seen classes for our (Lcls) method.
It indicates a balanced generalization of ZSD in both seen and unseen classes.

Learning without meta-class: For some applications, the meta-class based
supervision may not be available. In such case, one can define meta-class in an
unsupervised manner by applying a clustering mechanism on original semantic
embedding.

ZSL vs ZSD loss: Many traditional non-end-to-end trainable ZSR methods
consider different aspects of regularization [32], transductive setting [24], metric
learning [29], domain adaptation [18] and class attribute association [4] etc.
Similarly, the end-to-end trainable ZSR methods [51,22] employ different non-
linearity in feature and semantic pipeline. But, those traditional loss formulations
need to be redesigned in ZSD case to be compatible for both classification and
box detection losses.

E. Qualitative results

We provide more examples of ZSD in Fig. 4. One can find that the prediction
score threshold is lower (0.3 used in the examples) than the value (greater than
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Fig. 3. Distribution of instances per classes within each meta class. Two most common
(frequent) seen classes and unseen classes are marked in white and black color text
respectively. Red dashed line indicates 50 percentile boundary. All unseen classes lie
within the rarest half of the instance distribution.

mAP Step 1 Baseline Ours (L′
mm) Our (Lcls)

Seen 33.7 33.4 27.7 26.1

Unseen (all) - 12.7 15.0 16.4

Unseen (setected) - 18.6 22.7 27.4

Table 3. Comparison of seen and unseen class performance using ResNet as convolu-
tion layers. word2vec is used for baseline, our (L′

mm) and our (Lcls). Best performance
in each row are shown as bold. We refer Unseen (all): mAP of all unseen classes, Unseen
(selected): mAP of selected classes for which visually similar classes are present.

0.5) used in traditional object detection like faster-RCNN [38]. It indicates that
the prediction of ZSD has less confidence than that of traditionally seen detec-
tion. As zero-shot method does not observe any training instances of unseen
classes during the whole learning process, the confidence of prediction cannot
be as strong as the seen counterpart. Moreover, a ZSD method needs to corre-
spond visual features with semantic word vectors which are noisy in general. It
degrades the overall confidence for ZSD.

In the last layer of the box regression branch, our method does not have spec-
ified bounding boxes for un-seen classes. Instead, bounding box corresponding
to a closely related seen class that has the maximum score is used for un-seen
localization. Therefore, a correct unseen class prediction sometimes cannot get
very accurate localizations as illustrated in Fig. 5.
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Fig. 4. Selected examples of ZSD of our (Lcls) with λ = .6 and R+w2v, using the
prediction score threshold = 0.3.

Fig. 5. Examples of incorrect detection but correct classification. The unseen class
‘bow-tie’, ‘pineapple’ and ‘bench’ are incorrectly localized in these images.
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